github link
Accession IconGSE60785

The Sweden Canceromics Analysis Network - Breast (SCAN-B) Initiative: a large-scale multicenter infrastructure towards implementation of breast cancer genomic analyses in the clinical routine [microarrays]

Organism Icon Homo sapiens
Sample Icon 55 Downloadable Samples
Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Submitter Supplied Information

Breast cancer exhibits significant molecular, pathological, and clinical heterogeneity. Current clinicopathological evaluation is imperfect for predicting outcome, which results in overtreatment for many patients, and for others, leads to death from recurrent disease. Therefore, additional criteria are needed to better personalize care and maximize treatment effectiveness and survival. To address these challenges, the Sweden Cancerome Analysis Network - Breast (SCAN-B) consortium was initiated in 2010 as a multicenter prospective study with longsighted aims to 1) analyze breast cancers with next-generation genomic technologies for translational research in a population-based manner and integrated with healthcare; 2) decipher fundamental tumor biology from these analyses; 3) utilize genomic data to develop and validate new clinically-actionable biomarker assays; and 4) build the infrastructure for real-time clinical implementation of molecular diagnostic, prognostic, and predictive tests. In the first phase, we focus on molecular profiling by next-generation RNA-sequencing on the Illumina platform. In the three years from August 30, 2010 through August 31, 2013, we have consented and enrolled 3,979 patients with primary breast cancer at the seven hospital sites in South Sweden, representing approximately 85% of eligible patients in the catchment area. Pre-operative blood samples have been collected for 3,942 (99%) patients and primary tumor specimens collected for 2,929 (74%) patients. Herein we describe the study infrastructure and present initial proof of concept results from prospective RNA-sequencing including tumor molecular subtyping and detection of driver gene mutations. We demonstrate that large-scale population-based collection and RNA-sequencing analysis of breast cancer is feasible. The SCAN-B Initiative should significantly reduce the time to discovery, validation, and clinical implementation of novel molecular diagnostic and predictive tests. We welcome the participation of additional comprehensive cancer treatment centers.
PubMed ID
Total Samples
Submitter’s Institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Specimen part
Processing Information
Additional Metadata
No rows found