github link
Accession IconGSE58671

Enhanced MET signaling in mouse epidermis activates EGFR and initiates squamous carcinogenesis

Organism Icon Mus musculus
Sample Icon 12 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Submitter Supplied Information

Description
MET expression is elevated in a majority of human skin cancers but its contributions to pathogenesis have not been evaluated. In a mouse model of constitutive overexpression of HGF (MT-HGF), the incidence of squamous cell skin tumors induced by initiation with 7,12-dimethylbenz(a)anthracene (DMBA) followed by exposure to 12-O-tetradecanoyl-phorbol-13-acetate (TPA) is increased fivefold over control groups. Half of these tumors carry Hras1 or Kras mutations. Without DMBA initiation, tumors also erupt on MT-HGF mouse skin but only when TPA promotion is enhanced by crossing these mice with mice overexpressing cutaneous PKC. None of these tumors have Ras mutations. In culture, MT-HGF keratinocytes share identical MET mediated phenotypic and biochemical features with wildtype keratinocytes transformed by oncogenic RAS. In both cell types, these common features of initiated keratinocytes arise from autocrine activation of EGFR through elevated expression and release of EGFR ligands. Inhibition of EGFR ablates the initiated signature of MT-HGF keratinocytes in vitro and causes regression of MT-HGF induced tumors in vivo. Global gene expression data indicate that MT-HGF and RAS transformed keratinocytes share largely an identical profile of over 5000 mRNAs. Gene ontology analysis reveals the most affected concordant signature is enriched for functions relevant to tissue development and response to wounding, accompanied by cytokine and growth factor activity, and peptidase and endopeptidase activity previously not linked to initiated keratinocytes. Furthermore, gene co-expression analysis in skin cancer patients revealed a core RAS/MET co-expression network considerably activated in pre cancerous and cancerous lesions. Thus MET activation though EGFR contributes to human cutaneous cancers, and inhibitors could be efficacious in advanced lesions such as those seen in transplant recipient patients.
PubMed ID
Total Samples
12
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...