github link
Accession IconGSE5666

Hippocampal pathways in cognitive impairment

Organism Icon Rattus norvegicus
Sample Icon 28 Downloadable Samples
Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Submitter Supplied Information

Description
Although immediate early genes (IEGs) such as Bdnf, Arc and Egr1, have been implicated in plasticity, the larger pathways related to memory and memory disorders are not well understood. Here, we combined statistical Affymetrix microarray and behavioral analyses to identify key genes and pathways associated with aging-related cognitive impairment. Aged rats were separated into cognitively unimpaired (AU) or impaired (AI) groups, based on their Morris water maze performance relative to young-adult (Y) animals. Hippocampal gene expression was assessed in Y, AU and AI on the fifth (last) day of maze training or 21 days posttraining, and in non-trained aged and young animals (eight groups, overall n = 78, one chip/animal). ANOVA, linear contrasts, and overrepresentation analyses identified genes and pathways that differed from Y generally with aging (in both AU and AI) or selectively with cognitive status (only in AI or AU). Plasticity pathways, including insulin/cAMP/IEG signaling, and glycogenolytic and lipogenic pathways, were selectively downregulated (5 days) in AI, whereas Notch2 (regulating oligodendrocyte differentiation) and myelination pathways were upregulated (particularly at 21 days). Downregulation with general aging occurred in signal transduction and axonal growth/transport pathways, whereas upegulation occurred in immune/inflammatory, lipid metabolism/transport (e.g., Lxr-Srebf1), and lysosomal pathways. In AU, receptor/signal transduction genes were selectively upregulated, suggesting possible compensatory mechanisms. Immunohistochemistry confirmed and extended results to the protein level. Thus, this study identified novel cognition-linked processes, suggesting a new model in which energy-intensive, plasticity/lipogenic processes and energy-generating pathways necessary for learning are coordinately downregulated during training, while myelinogenic programs that impair cognition are concurrently activated.
PubMed ID
Total Samples
78
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...