github link
Accession IconGSE55148

Mildly compromised tetrahydrobiopterin biosynthesis mouse mutants exhibit abnormal body fat distribution and abdominal obesity

Organism Icon Mus musculus
Sample Icon 16 Downloadable Samples
Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Submitter Supplied Information

Description
Tetrahydrobiopterin (BH4) is an essential cofactor for several metabolic enzymes, including the aromatic amino acid hydroxylases, alkylglycerol mono-oxygenase and NO synthases. BH4 deficiency due to an autosomal recessive defect in its biosynthetic enzyme 6-pyruvoyltetrahydropterin synthase (PTPS, encoded by the PTS gene) leads to a variant form of hyperphenylalaninemia concomitant with severe deficiency of brain monoamine neurotransmitters. In contrast, augmentation of BH4 by pharmacological supplementation or stimulation of its biosynthesis is thought to correct eNOS dysfunction, to protect from (cardio) vascular disease and/or to prevent from abdominal obesity and development of the metabolic syndrome. We have previously reported that complete Pts knock-out (ko) mice die after birth (Elzaouk et al JBC 2003). Here we generated a murine Pts-knock-in (ki) allele expressing a PTPS-p.Arg15Cys mutant enzyme with low residual activity (12% of wild-type in vitro) and investigated heterozygous Pts-ko/wt, homozygous Pts-ki/ki and compound heterozygous Pts-ki/ko mutant mice. All mice were viable and, depending on the severity of the Pts alleles, exhibited up to 90% reduction of PTPS activity in liver and brain tissues concomitant with high neopterin, but neither an elevation of blood L-Phe, nor a decrease in brain monoamine neurotransmitters dopamine or serotonin. Upon a standard systemic and comprehensive phenotyping of Pts-ki/ki mice, we found alterations in energy metabolites with reduced body mass, higher fat content, lower lean mass, and increased blood glucose and cholesterol in mutant animals. Furthermore, heterozygous Pts-ko/wt and/or homozygous Pts-ki/ki mice exhibited increased body weight and elevated intra-abdominal fat tissue when fed with normal chow or high fat diet. We conclude that a reduced BH4-biosynthetic activity in mice leads to abnormal body fat distribution and abdominal obesity potentially through a mildly compromised eNOS function.
PubMed ID
No associated PubMed ID
Publication Title
No associated publication
Total Samples
16
Submitter’s Institution
Authors
No associated authors
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Age
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...