github link
Accession IconGSE50928

Defective NK cells in AML patients at diagnosis are associated with blast transcriptional signatures of immune evasion

Organism Icon Homo sapiens
Sample Icon 13 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Acute myeloid leukemia (AML) is a heterogeneous group of malignancies which may be sensitive to the natural killer (NK) cell anti-tumor response. However, NK cells are frequently defective in AML. Here, we found in an exploratory cohort (n = 46) that NK-cell status at diagnosis of AML separated patients in two groups with a different clinical outcome. Patients with a deficient NK-cell profile, including reduced expression of some activating NK receptors (e.g. DNAM-1, NKp46 and NKG2D) and decreased IFN-g production, had a significantly higher risk of relapse (P = 0.03) independently of cytogenetic classification in multivariate analysis. Patients with defective NK cells showed a profound gene expression decrease in AML blasts for cytokine and chemokine signaling (e.g. IL15, IFNGR1, IFNGR2, CXCR4), antigen processing (e.g. HLA-DRA, HLA-DRB1, CD74) and adhesion molecule pathways (e.g. PVR, ICAM1). A set of 388 leukemic classifier genes defined in the exploratory cohort was independently validated in a multicentric cohort of 194 AML patients. In total, these data evidenced the interplay between NK-cells and AML blasts at diagnosis allowing an immune-based stratification of AML patients independently of clinical classifications.
PubMed ID
Total Samples
Submitter’s Institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Disease stage
Processing Information
Additional Metadata
No rows found