github link
Accession IconGSE47031

Transcriptional profiling of Pseudomonas aeruginosa PAO1161 strain and its parA and parB mutants

Organism Icon Pseudomonas aeruginosa
Sample Icon 9 Downloadable Samples
Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Submitter Supplied Information

Description
Representatives of two families of bacterial Par proteins, ParA and ParB, are encoded by the majority of bacterial chromosomes in the close vicinity of oriC. ParA(Soj) and ParB(Spo0J) proteins of Pseudomonas aeruginosa are both important for optimal growth, nucleoids segregation, cell division and different types of motility. Comparative transcriptome analysis of parAnull, parBnull mutants versus parental PAO1161 strain of P. aeruginosa demonstrated global changes in genes expression pattern in logarithmic phase of planktonic cultures grown on rich medium. The set of genes that were similarly regulated in both mutant strains as compared to the wild-type strain as well as two sets of genes uniquely affected in the particular mutant were defined suggesting that ParA and ParB may act in common and independently. In general, many genes involved in cell division, DNA and RNA processing and metabolic processes were down-regulated in mutant cells, in contrast genes which products play a role in adaptation, protection, motility, cell-to-cell signaling as well as signal transduction increased their expression in par mutant cells. Besides their role in chromosome segregation, ParA and ParB seem to have the potential to regulate genes transcription. The altered expression of a large number of genes encoding known or predicted transcriptional regulators and genes coding for products involved in c-di-GMP signalling, suggests that the part of observed global changes in genes expression pattern in parAnull and parBnull mutants might be the effect of indirect regulation mediated by regulatory genes under ParA and ParB control. The extended regulatory network provides the mechanism to modulate genes expression in response to the stage of the chromosome segregation process and cell cycle.
PubMed ID
Publication Title
No associated publication
Total Samples
9
Submitter’s Institution
Authors
No associated authors
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...