github link
Accession IconGSE4448

Global analysis of the transcriptional network controlling Xenopus endoderm formation

Organism Icon Xenopus laevis
Sample Icon 31 Downloadable Samples
Technology Badge Icon Affymetrix Xenopus laevis Genome Array (xenopuslaevis)

Submitter Supplied Information

Description
A conserved molecular pathway has emerged controlling endoderm formation in Xenopus zebrafish and mice. Key genes in this pathway include Nodal ligands and transcription factors of the Mix-like paired homeodomain class, Gata4-6 zinc finger factors and Sox17 HMG domain proteins. While a linear epistatic pathway has been proposed, the precise hierarchical relationships between these factors and their downstream targets are largely unresolved. Here we used a combination of microarray analysis and loss-of-function experiments to examine the global regulatory network controlling Xenopus endoderm formation. We identified over 300 transcripts enriched in the gastrula endoderm, including most of the known endoderm regulators as well as over a hundred uncharacterized genes. Surprisingly only 10% of the endoderm transcriptome is regulated as predicted by the current linear model. We find that Nodals, Mixer and Sox17 have both shared and distinct sets of downstream targets and that a number of unexpected autoregulatory loops exist between Sox17 and Gata4-6, Sox17 and Bix1, 2, 4 and between Sox17 and Xnr4. We find that Mixer does not function primarily via Sox17 as previously proposed. This data provides a new insight into the complexity of endoderm formation and will serve as valuable resource for establishing a complete endoderm gene regulatory network.
PubMed ID
Total Samples
31
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...