github link
Accession IconGSE43832

Overexpression of PLIN5 in skeletal muscle promotes oxidative gene expression and intramyocellular lipid content without compromising insulin sensitivity

Organism Icon Rattus norvegicus
Sample Icon 3 Downloadable Samples
Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Submitter Supplied Information

Description
Aims/hypothesis: While lipid deposition in skeletal muscle is considered to be involved in obesity-associated insulin resistance, neutral intramyocellular lipid (IMCL) accumulation per se does not necessarily induce insulin resistance. We previously demonstrated that overexpression of the lipid droplet coat protein perilipin 2 augments intramyocellular lipid content while improving insulin sensitivity. Another member of the perilipin family, perilipin 5 (PLIN5), is predominantly expressed in oxidative tissues like skeletal muscle. Here we investigated the effects of PLIN5 overexpression in comparison with effects of PLIN2 on skeletal muscle lipid levels, gene expression profiles and insulin sensitivity. Methods: Gene electroporation was used to overexpress PLIN5 in tibialis anterior muscle of rats fed a high fat diet. Eight days after electroporation, insulin-mediated glucose uptake in skeletal muscle was measured by means of a hyperinsulinemic euglycemic clamp. Electron microscopy, fluorescence microscopy and lipid extractions were performed to investigate IMCL accumulation. Gene expression profiles were obtained using microarrays. Results: TAG storage and lipid droplet size increased upon PLIN5 overexpression. Despite the higher IMCL content, insulin sensitivity was not impaired and DAG and acylcarnitine levels were unaffected. In contrast to the effects of PLIN2 overexpression, microarray data analysis revealed a gene expression profile favoring FA oxidation and improved mitochondrial function. Conclusions/interpretation: Both PLIN2 and PLIN5 increase neutral IMCL content without impeding insulin-mediated glucose uptake. As opposed to the effects of PLIN2 overexpression, overexpression of PLIN5 in skeletal muscle promoted expression of a cluster of genes under control of PPAR and PGC1 involved in FA catabolism and mitochondrial oxidation.
PubMed ID
Total Samples
3
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Age
Specimen part
Treatment
Processing Information
Additional Metadata
No rows found
Loading...