github link
Accession IconGSE42363

Exome and whole genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity

Organism Icon Homo sapiens
Sample Icon 14 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

The incidence of esophageal adenocarcinoma (EAC) has risen 600% over the last 30 years. With an extremely poor five-year survival rate of only 15%, identification of new therapeutic targets for EAC is of great importance. Here, we analyze the mutation spectra from the whole exome sequencing of 149 EAC tumors/normal pairs, 15 of which have also been subjected to whole genome sequencing. We identify a novel mutational signature in EACs defined by a high prevalence of A to C transversions at Ap*A dinucleotides. Statistical analysis of the exome data identified 26 genes that are mutated at a significant frequency. Of these 26 genes, only four (TP53, CDKN2A, SMAD4, and PIK3CA) have been previously implicated in EAC. The novel significantly mutated genes include several chromatin modifying factors and candidate contributors to EAC: SPG20, TLR4, ELMO1, and DOCK2. Notably, functional analyses of EAC-derived mutations in ELMO1 increase cellular invasion. Therefore, we suggest a new hypothesis about the potential activation of the RAC1 pathway to be a contributor to EAC tumorigenesis.
PubMed ID
Total Samples
Submitter’s Institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Specimen part
Disease stage
Processing Information
Additional Metadata
No rows found