github link
Accession IconGSE42291

Transcriptional analysis of cervical epithelial cell responses to HIV-1

Organism Icon Homo sapiens
Sample Icon 4 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

HIV-1 infections of women are mainly acquired through female reproductive tract where cervical and vaginal epithelial cells are the first line of defense. Although HIV-1 does not directly infect epithelial cells, HIV-1 obligatorily interacts with and crosses over epithelial layer to infect susceptible target cells, mainly CD4+ T cells, in the lamina propria to initiate an infection. However, the mechanism and ramification of the interaction of HIV-1 and epithelial cells in vaginal transmission of HIV-1 remain to be elucidated. We hypothesized that cervical epithelial cells are not a passive barrier, but actively respond to HIV-1 to change mucosal milieu and facilitate HIV-1 transmission. We tested this hypothesis by studying the responses of cervical epithelial cells to HIV-1 through profiling genome-wide transcription. We found 1) cervical epithelial cells actively respond to HIV-1. Five hundred forty-three transcripts/genes in cervical epithelial cells were significantly altered in expression at four hours post exposure to HIV-1, of which many relate to important signaling pathways, such as innate immune responses, pattern recognition receptors, apoptosis, biosynthesis, and energy production, 2) HIV-1 increases the expression of CXC Chemokines (IL-8, CXCL1 and CXCL3) in cervical epithelial cells. IL-8 and CXCL1 are potent chemotactic for multinuclear neutrophils (MNP), monocytes and a minority of lymphocytes, and CXCL3 is predominant chemotactic for monocytes, 3) HIV-1 increases the expression of key inflammatory enzymes-COX-1 and COX-2. COX-1 is responsible for the production of prostaglandins that are important for homeostatic functions, and COX-2 is a key enzyme to convert arachidonic acid to prostaglandins, key inflammatory mediators, and 4) the increased expression of IL-8 and COX-2 revealed using microarray analysis was mapped into the endocervical epithelial cells of macaques inoculated with inactivated SIV in vivo. Our date lead to a role model of epithelial cells in HIV-1 vaginal transmission, that is the axis of HIV-1, epithelial cells, proinflammatory molecules (IL-8, CXCL1, CXCL3, COX-1 and COX-2), cell recruitment (MNP, monocytes and T cells), and inflammation. This model implies that moderating epithelial proinflammatory response to HIV-1 may be utilized in prevention of HIV vaginal transmission.
PubMed ID
No associated PubMed ID
Publication Title
No associated publication
Total Samples
Submitter’s Institution
No associated authors
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Specimen part
Cell line
Processing Information
Additional Metadata
No rows found