github link
Accession IconGSE41572

Molecular mechanisms of pulmonary response progression in crystalline silica exposed rats

Organism Icon Rattus norvegicus
Sample Icon 36 Downloadable Samples
Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Submitter Supplied Information

Description
The capability to detect target organ toxicity as well as to determine the molecular mechanisms underlying such toxicity by employing surrogate biospecimens that can be obtained by a non-invasive or minimally invasive procedure has significant advantage in occupational toxicology. Pulmonary toxicity and global gene expression profile in the lungs, peripheral blood and bronchoalveolar lavage (BAL) cells were determined in rats at 44-weeks following pulmonary exposure to crystalline silica (15 mg/m3, 6-hours/day, 5 days). A significant elevation in lactate dehydrogenase activity and albumin content observed in the BAL fluid suggested the induction of pulmonary toxicity in the silica exposed rats. Similarly, the observation of histological alterations, mainly type II pneumocyte hyperplasia and fibrosis, in the lungs further confirmed silica-induced pulmonary toxicity in the rats. A significant increase in the number of neutrophils and elevated monocyte chemotactic protein 1 level in the BAL fluids suggested silica-induced pulmonary inflammation in the rats. Determination of global gene expression profile in the lungs, BAL cells, and peripheral blood of the silica exposed rats identified 144, 236, and 51 significantly differentially expressed genes (SDEGs), respectively, compared with the corresponding control samples. Bioinformatics analysis of the SDEGs demonstrated a remarkable similarity in the biological functions, molecular networks and canonical pathways that were significantly affected by silica exposure in the lungs, BAL cells and blood of the rats. Induction of inflammation was identified, based on the bioinformatics analysis of the significantly differentially expressed genes in the lungs, blood and BAL cells, as the major molecular mechanism underlying the silica-induced pulmonary toxicity. The findings of our study demonstrated the potential application of global gene expression profiling of peripheral blood and BAL cells as a valuable minimally invasive approach to study silica-induced pulmonary toxicity in rats.
PubMed ID
Total Samples
36
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Specimen part
Time
Processing Information
Additional Metadata
No rows found
Loading...