github link
Accession IconGSE37944

Sparing of muscle mass and function by passive loading in an experimental intensive care unit model

Organism Icon Rattus norvegicus
Sample Icon 46 Downloadable Samples
Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Submitter Supplied Information

Description
Critically ill intensive care unit (ICU) patients commonly develop severe muscle wasting and impaired muscle function, leading to delayed recovery, with subsequent increased morbidity and financial costs, and decrease quality of life of survivors. Acute Quadriplegic Myopathy (AQM) is one of the most common neuromuscular disorders associated with ICU-acquired muscle weakness. Although there are no available treatments for the ICU-acquired muscle weakness, it has been demonstrated that early mobilization can improve its prognosis and functional outcomes. This study aims at improving our understanding of the effects of passive mechanical loading on skeletal muscle structure and function by using a unique experimental rat ICU model allowing analyses of the temporal sequence of changes in mechanically ventilated and pharmacologically paralyzed animals at durations varying from 6 h to 14 days. Results show that passive mechanical loading alleviated the muscle wasting and the loss of force-generation associated with the ICU intervention, resulting in a doubling of the functional capacity of the loaded vs. unloaded muscles after a 2-week ICU intervention. We demonstrated that the improved maintenance of muscle structure and function is likely a consequence of a reduced oxidative stress, and a reduced loss of the molecular motor protein myosin. A complex temporal gene expression pattern, delineated by microarray analysis, was observed with loading-induced changes in transcript levels of sarcomeric proteins, muscle developmental processes, stress response, ECM/cell adhesion proteins and metabolism. Thus, the results from this study show that passive mechanical loading alleviates the severe negative consequences on muscle structure and function associated with mechanical silencing in ICU patients, strongly supporting early and intense physical therapy in immobilized ICU patients.
PubMed ID
Total Samples
46
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Specimen part
Time
Processing Information
Additional Metadata
No rows found
Loading...