github link
Accession IconGSE36427

KLF1, KLF2 and c-myc control a regulatory network essential for embryonic erythropoiesis

Organism Icon Mus musculus
Sample Icon 14 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Submitter Supplied Information

Description
The Krppel-like factors, KLF1 and KLF2, positively regulate embryonic -globin expression, and have additional overlapping roles in embryonic (primitive) erythropoiesis. KLF1-/-KLF2-/- double knockout mice are anemic at embryonic day 10.5 (E10.5) and die by E11.5, in contrast to single knockouts. To investigate the combined roles of KLF1 and KLF2 in primitive erythropoiesis, expression profiling of E9.5 erythroid cells was performed. A limited number of genes had a significantly decreasing trend of expression in wild-type, KLF1-/- and KLF1-/-KLF2-/-. Among these, c-myc emerged as a central node in the most significant gene network. c-myc expression is synergistically regulated by KLF1 and KLF2, and both factors bind the c-myc promoters. To characterize the role of c-myc in primitive erythropoiesis, ablation was performed specifically in mouse embryonic proerythroblast cells. After E9.5, these embryos exhibit an arrest in the normal expansion of circulating red cells and develop anemia analogous to KLF1-/-KLF2-/-. In the absence of c-myc, circulating erythroid cells do not show the normal increase in - and -like globin expression, but interestingly, have accelerated erythroid maturation, between E9.5 and E11.5. This study reveals a novel regulatory network by which KLF1 and KLF2 regulate c-myc, to control the primitive erythropoietic program.
PubMed ID
Total Samples
14
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...