github link
Accession IconGSE21700

Early B Cell Factor 2 Regulates Hematopoietic Stem Cell Homeostasis in a Cell-Nonautonomous Manner

Organism Icon Mus musculus
Sample Icon 2 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Submitter Supplied Information

Description
Hematopoiesis requires the interaction of hematopoietic stem cells (HSCs) with various stromal microenvironments. Here, we examine the role of early B cell factor 2 (Ebf2), a transcription factor expressed in a subset of immature osteoblastic cells. Ebf2-/- mice show decreased frequencies of HSCs and lineage-committed progenitors. This defect is cell nonautonomous, as shown by the fact that transplantation of Ebf2-deficient bone marrow into wild-type hosts results in normal hematopoiesis. In coculture experiments, Ebf2 Ebf2-/-osteoblastic cells have reduced potential to support short-term proliferation of HSCs. Expression profiling of sorted Ebf2-/- osteoblastic cells indicated that several genes implicated in the maintenance of HSCs are downregulated relative to Ebf2+/- cells, whereas genes encoding secreted frizzled-related proteins are upregulated. Moreover, HSCs from Ebf2-/- mice and wild-type HSCs cocultured with Ebf2-/- osteoblastic cells show reduced Wnt responses. Thus, Ebf2 acts as a transcriptional determinant of an osteoblastic niche that regulates the maintenance of hematopoietic progenitors, in part by modulating Wnt signaling.
PubMed ID
Publication Title
No associated publication
Total Samples
2
Submitter’s Institution
Authors
No associated authors
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...