github link
Accession IconGSE21514

The mRNA and microRNA expression profile of the RNA-induced silencing complex in human U-87 astrocytoma cells and primary human astrocytes

Organism Icon Homo sapiens
Sample Icon 4 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Description
mRNA and microRNA expression was examined in global cellular fractions and in RNA-induced silencing complex (RISC)-immunoprecipitated cell fractions in cultured primary human astrocytes (ScienCell) and in cultured human U-87 MG astrocytoma cells (ATCC). ABSTRACT: Background: GW/P bodies are cytoplasmic ribonucleoprotein-rich foci that are involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. These mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 when bound to miRNA within the RNA-induced silencing complex (RISC). Although miRNAs and mRNAs are known to be localized to RISC in a variety of cells, to date no published study has examined the profile of specific miRNA and mRNA targeted to the RISC. Methodology/Principle Findings: In this study, RISC mRNA and miRNA components were profiled by microarray analysis of human U-87 astrocytoma cells and primary human astrocytes with total RNA extracted from the RISC as well as the global cellular fractions. The novel findings of this study were fourfold: (1) miRNAs are highly enriched in primary astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma cells and primary astrocytes each contain unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p were upregulated and miR-181b was downregulated in U-87 astrocytoma RISC as compared to primary astrocyte RISC, and (4) RISC contain mostly downregulated mRNAs in primary astrocytes and U-87 astrocytoma cells. Conclusions/Significance: We show that in U-87 astrocytoma cells, miR-34a and miR-195 were upregulated in RISC suggesting an oncogenic role for these miRNAs. Three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated. One miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in cancer, inflammatory disease, immunological disease, the cell cycle, cellular movement and numerous cell signaling pathways. This study points to the importance of the RISC and ultimately GW/P body composition and function and in miRNA and mRNA deregulation in astrocytoma cells and possibly for other brain tumors.
PubMed ID
Total Samples
8
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Cell line
Processing Information
Additional Metadata
No rows found
Loading...