github link
Accession IconGSE20667

The Notch/Hes1 pathway sustains NF-B activation through CYLD repression in T cell leukemia

Organism Icon Homo sapiens
Sample Icon 20 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Description
The NF-B pathway is a critical regulator of the immune system and has been implicated in cellular transformation and tumorigenesis. NF-B response is regulated by the activation state of the IB kinase (IKK) complex and triggered by a wide spectrum of stimuli. We previously reported that NF-B is downstream of Notch1 in T cell acute lymphoblastic leukaemia (T-ALL), however both the mechanisms involving Notch1-induced NF-B activation and the potential importance of NF-B in the maintenance of the disease are unknown. Here we visualize Notch-induced NF-B activation using both human T-ALL cell lines and animal models of this type of leukemia. We show that it is not Notch1 itself but Hes1, a canonical Notch target, the responsible for sustaining IKK activation in T-ALL. Hes1 exerts its effects by a direct transcriptional repression of the deubiquitinating enzyme CYLD, a well-characterized IKK inhibitor. Consistently, CYLD expression is significantly reduced in primary T-ALL leukemias. Finally, we demonstrate that IKK complex inhibition is a promising option for the targeted therapy of T-ALL as suppression of IKK function affected both the survival of human T-ALL cells in vitro and the maintenance of the disease in vivo.
PubMed ID
Total Samples
20
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Cell line
Processing Information
Additional Metadata
No rows found
Loading...