github link
Accession IconGSE20054

H3K27 Methyltransferase PRC2 Represses Wnt Genes to Facilitate Adipogenesis

Organism Icon Mus musculus
Sample Icon 3 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Submitter Supplied Information

The Wnt/b-catenin signaling inhibits adipogenesis. Genome-wide profiling studies have revealed the enrichment of histone H3K27 methyltransferase PRC2 on Wnt genes. However, the functional significance of such a direct link between the two types of developmental regulators in mammalian cells, and the role of PRC2 in adipogenesis, remain unclear. Here we show PRC2 and its H3K27 methyltransferase activity are required for adipogenesis. PRC2 directly represses Wnt1, 6, 10a and 10b genes in preadipocytes and during adipogenesis. Deletion of the enzymatic Ezh2 subunit of PRC2 eliminates H3K27me3 on Wnt promoters and de-represses Wnt expression, which leads to activation of Wnt/b-catenin signaling and inhibition of adipogenesis. Ectopic expression of the wild type Ezh2, but not the enzymatically inactive F667I mutant, prevents the loss of H3K27me3 and the defects in adipogenesis in Ezh2-/- preadipocytes. The adipogenesis defects in Ezh2-/- cells can be rescued by expression of adipogenic transcription factors PPARa, C/EBPb, or inhibitors of Wnt/b-catenin signaling. Interestingly, Ezh2-/- cells show marked increase of H3K27 acetylation globally as well as on Wnt promoters. These results indicate that H3K27 methyltransferase PRC2 directly represses Wnt genes to facilitate adipogenesis, and suggest that acetylation and trimethylation on H3K27 play opposing roles in regulating Wnt expression.
PubMed ID
Total Samples
Submitter’s Institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Specimen part
Processing Information
Additional Metadata
No rows found