github link
Accession IconGSE18704

WNT4 is required for ovarian follicle development and female fertility

Organism Icon Mus musculus
Sample Icon 9 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Submitter Supplied Information

Description
To study the physiological role of WNT4 in the postnatal ovary, a mouse strain bearing a floxed Wnt4 allele was created and mated to the Amhr2tm3(cre)Bhr strain to target deletion of Wnt4 to granulosa cells. Wnt4flox/-;Amhr2tm3(cre)Bhr/+ mice had significantly reduced ovary weights and produced smaller litters (P<0.05). Serial follicle counting demonstrated that, while Wnt4flox/-;Amhr2tm3(cre)Bhr/+ mice were born with a normal ovarian reserve and maintained normal numbers of small follicles until puberty, they had only 25.2% of the normal number of healthy antral follicles. Some Wnt4flox/-;Amhr2tm3(cre)Bhr/+ mice had no antral follicles or corpora lutea and underwent premature follicle depletion. RTPCR analyses of Wnt4flox/-;Amhr2tm3(cre)Bhr/+ granulosa cells and cultured granulosa cells that overexpress WNT4 demonstrated that WNT4 regulates the expression of Star, Cyp11a1 and Cyp19, steroidogenic genes previously identified as downstream targets of the WNT signaling effector CTNNB1. WNT4- and CTNNB1-overexpressing cultured granulosa cells were analyzed by microarray for alterations in gene expression, which showed that WNT4 also regulates a series of genes involved in late follicle development and the cellular stress response via the WNT/CTNNB1 signaling pathway. Together, these data indicate that WNT4 is required for normal antral follicle development, and may act by regulating granulosa cell functions including steroidogenesis.
PubMed ID
Total Samples
9
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Specimen part
Treatment
Processing Information
Additional Metadata
No rows found
Loading...