github link
Accession IconGSE18614

Differential Regulation of Mitogen-Activated Protein Kinases by Acetaminophen in TAMH cells

Organism Icon Mus musculus
Sample Icon 27 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Submitter Supplied Information

Acetaminophen (APAP), a widely used analgesic and antipyretic that is considered to be relatively safe at recommended doses, is the leading cause of drug-induced liver failure in the United States. 3-Hydroxyacetanilide (AMAP), a regioisomer of acetaminophen is useful as a comparative tool for studying APAP-induced toxicity since it is non-toxic relative to APAP. TGF-alpha transgenic mouse hepatocytes were treated with both isomers to investigate mitogen-activated protein kinase cascades in order to differentiate their toxicological outcomes. Mitogen-activated protein kinase (MAPK) cascade expression and activation were measured using microarray and Bioplex technologies, respectively. APAP treatment led to c-Jun N-terminal kinase (JNK) activation, whereas AMAP treatment led to the activation of extracellular-signal-regulated protein kinase (ERK). The microarray data suggested APAP treatment may upregulate gene expression at multiple levels of the JNK cascade including a JNK-related scaffold protein. Expression data was related to phosphoprotein levels using the Bioplex system. APAP treatment led to a significant activation of JNK compared to its regioisomer. In contrast, microarray analysis of AMAP showed a slight upregulation of ERK gene activity. Furthermore, Bioplex data showed AMAP treatment led to significant ERK phosphorylation compared to APAP. Cell viability assays confirmed that APAP-induced activation of JNK was related to higher rates of cell death, whereas activation of ERK by AMAP may be cytoprotective.
PubMed ID
Total Samples
Submitter’s Institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Cell line
Processing Information
Additional Metadata
No rows found