github link
Accession IconGSE18370

21T series cell lines show distinct stage-specific gene expression alterations

Organism Icon Homo sapiens
Sample Icon 9 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Description
Pathologic and epidemiologic evidence has led to a histologic model of breast cancer progression that involves advancement through specific morphologic stages including atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS) and invasive mammary carcinoma (IMC), although not necessarily always in a linear fashion. Numerous observational studies have examined genetic, epigenetic and gene expression differences in breast tissues representing these different stages of progression, but model systems which would allow for experimental testing of specific factors influencing transition through these stages are scarce. The 21T series cell lines, all originally derived from the same patient with metastatic breast cancer, have been proposed to represent a mammary tumor progression series. We report here that three of the 21T cell lines indeed mimic specific stages of human breast cancer progression (21PT-derived cells, ADH; 21NT-derived cells, DCIS; 21MT-1 cells, IMC) when grown in the mammary fat pad of nude mice, albeit after up to a year post-injection. In order to develop a more rapid, readily manipulatable in vitro assay for examining the biologic differences between these cell lines, we have made use of a 3D Matrigel system. When grown in 3D Matrigel, we have found characteristic morphologies of the three cell lines in which quantifiable aspects of the stage-specific in vivo behaviors (i.e. differences in acinar structure formation, cell polarization, cell cohesiveness, cell proliferation, cell invasion) are re-capitulated in a reproducible fashion. Gene expression profiling has revealed a characteristic pattern for each of the three cell lines. Interestingly, WNT pathway alterations are particularly predominant in the early transition from 21PTci (ADH) to 21NTci (DCIS), whereas alterations in expression of genes associated with control of cell motility and invasiveness phenomena are more prominent in the later transition of 21NTci (DCIS) to 21MT-1 (IMC). This system thus reveals potential therapeutic targets and will provide a means of testing the influences of identified genes on transitions between these stages of pre-malignant to malignant growth.
PubMed ID
Total Samples
9
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...