github link
Accession IconGSE18359

Transcriptional profiling of response to acute caloric restriction in liver and fat of pigs differing in feed efficiency

Organism Icon Sus scrofa
Sample Icon 40 Downloadable Samples
Technology Badge Icon Affymetrix Porcine Genome Array (porcine)

Submitter Supplied Information

Description
Residual feed intake (RFI) is a measure of feed efficiency, where low RFI denotes high feed efficiency. Caloric restriction (CR) is associated with feed efficiency in livestock species and to human health benefits such as longevity and cancer prevention. We have developed pig lines that differ in RFI and are interested to identify the genes and pathways that underlie feed efficiency. Prepubertal Yorkshire gilts with low RFI (n=10) or high RFI (n=10) were fed ad libitum or at 80% of maintenance for eight days. We measured serum metabolites and generated transcriptional profiles of liver and subcutaneous adipose tissue. 6,114 genes in fat and 305 genes in liver were differentially expressed (DE) in response to CR and 311 in fat and 147 in liver were DE due to RFI differences. Pathway analyses of CR-induced DE genes indicated a switch to a conservation mode of energy by down-regulating lipogenesis and steroidogenesis in both liver and fat. Interestingly, CR in pigs altered expression of genes in immune and cell cycle/apoptotic pathways in fat, which may explain part of the CR-driven lifespan enhancement. In-silico analysis of transcription factors revealed ESR1 as a putative regulator of the adaptive response to CR and several targets of ESR1 in our DE fat genes were annotated as cell cycle/apoptosis genes. Lipid metabolic pathway was overrepresented by down-regulated genes due to both CR and low RFI. We propose a common energy conservation mechanism, which may be controlled by PPARA, PPARG, and/or CREB in both CR and feed efficient pigs.
PubMed ID
Total Samples
40
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Age
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...