github link
Accession IconGSE16970

Response of Pseudomonas aeruginosa PAO1 to low shear modeled microgravity

Organism Icon Pseudomonas aeruginosa pao1
Sample Icon 8 Downloadable Samples
Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Submitter Supplied Information

Description
Anticipating the risk for infectious disease during space exploration and habitation is a critical factor to ensure safety, health and performance of the crewmembers. As a ubiquitous environmental organism that is occasionally part of the human flora, Pseudomonas aeruginosa could pose a health hazard for the immuno-compromised astronauts. In order to gain insights in the behavior of P. aeruginosa in spaceflight conditions, two spaceflight-analogue culture systems, i.e. the rotating wall vessel (RWV) and the random position machine (RPM), were used. Microarray analysis of P. aeruginosa PAO1 grown in the low shear modeled microgravity (LSMMG) environment of the RWV compared to the normal gravity control (NG), revealed a regulatory role for AlgU (RpoE). Specifically, P. aeruginosa cultured in LSMMG exhibited increased alginate production and up-regulation of AlgU-controlled transcripts, including those encoding stress-related proteins. This study also shows the involvement of Hfq in the LSMMG response, consistent with its previously identified role in the Salmonella LSMMG- and spaceflight response. Furthermore, cultivation in LSMMG increased heat- and oxidative stress resistance and caused a decrease in the culture oxygen transfer rate. Interestingly, the global transcriptional response of P. aeruginosa grown in the RPM was similar to that in NG. The possible role of differences in fluid mixing between the RWV and RPM is discussed, with the overall collective data favoring the RWV as the optimal model to study the LSMMG-response of suspended cells. This study represents a first step towards the identification of specific virulence mechanisms of P. aeruginosa activated in response to spaceflight-analogue conditions, and could direct future research regarding the risk assessment and prevention of Pseudomonas infections for the crew in flight and the general public.
PubMed ID
Total Samples
8
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...