github link
Accession IconGSE15548

SAFB1 mediates repression of immune regulators and apoptotic genes in breast cancer cells

Organism Icon Homo sapiens
Sample Icon 29 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Submitter Supplied Information

The scaffold attachment factors SAFB1 and SAFB2 are paralogs, which are involved in cell cycle regulation, apoptosis, differentiation, and stress response. They have been shown to function as estrogen receptor co-repressors, and there is evidence for a role in breast tumorigenesis. To identify their endogenous target genes in MCF-7 breast cancer cells, we utilized gene expression array analysis, which was set up in a two-by-four design, with vehicle and estrogen treatment, and control, SAFB1, SAFB2, and SAFB1/SAFB2 siRNA as variables. Using custom chips containing 1.5 kb upstream regulatory region, we identified 541 SAFB1/SAFB2 binding sites in promoters of known genes, with significant enrichment on chromosome 1 and 6. Gene expression analysis revealed that the majority of target genes were induced in the absence of SAFB1 or SAFB2, and less were repressed. In contrast to SAFB2, which shared most of its target genes with SAFB1, SAFB1 had many unique target genes, most of them involved in regulation of the immune system. A subsequent analysis of the estrogen treatment group revealed that twelve percent of estrogen-regulated genes were dependent on SAFB1, with the majority being estrogen-repressed genes. These were primarily genes involved in apoptosis, such as BBC3, NEDD9, and OPG. Thus, this study confirms SAFB1/SAFB2s primary role as co-repressors, and also uncovers a previously unknown role for SAFB1 in regulation of immune genes, and in estrogen-mediated repression of genes.
PubMed ID
Total Samples
Submitter’s Institution
Alternate Accession IDs


Show of 0 Total Samples
Accession Code
Cell line
Processing Information
Additional Metadata
No rows found