github link
Accession IconGSE147384

MR Imaging Distinguishes Tumor Hypoxia Levels of Different Prognostic and Biological Significance in Cervical Cancer

Organism Icon Homo sapiens
Sample Icon 20 Downloadable Samples
Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Submitter Supplied Information

Description
Tumor hypoxia levels range from mild to severe and have different biological and therapeutical consequences, but are not easily assessable in patients. We present a method based on diagnostic dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) that visualizes a continuous range of hypoxia levels in tumors of cervical cancer patients. Hypoxia images were generated using an established approach based on pixel-wise combination of the DCE-MRI parameters e and Ktrans, reflecting oxygen consumption and supply, respectively. An algorithm to retrieve hypoxia levels from the images was developed and validated in 28 xenograft tumors, by comparing the MRI-defined levels with hypoxia levels derived from pimonidazole stained histological sections. We further established an indicator of hypoxia levels in patient tumors based on expression of nine hypoxia responsive genes. A strong correlation was found between these indicator values and the MRI-defined hypoxia levels in 63 patients. Chemoradiotherapy outcome of 74 patients was most strongly predicted by moderate hypoxia levels, whereas more severe or milder levels were less predictive. By combining gene expression profiles and MRI-defined hypoxia levels in cancer hallmark analysis, we identified a distribution of levels associated with each hallmark; oxidative phosphorylation and G2/M checkpoint were associated with moderate hypoxia, and epithelial-to-mesenchymal transition and inflammatory responses with significantly more severe levels. At the mildest levels, interferon response hallmarks, together with stabilization of HIF1A protein by immunohistochemistry, appearred significant. Thus, our method visualizes the distribution of hypoxia levels within patient tumors and has potential to distinguish levels of different prognostic and biological significance.
PubMed ID
Total Samples
20
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Cell line
Treatment
Processing Information
Additional Metadata
No rows found
Loading...