github link
Accession IconGSE14566

hMSC ATP treatment

Organism Icon Homo sapiens
Sample Icon 2 Downloadable Samples
Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Submitter Supplied Information

Description
Nucleotides triphosphates are extracellular messengers binding to specific plasma membrane receptors (P2Rs) that modulate responses as different as proliferation, differentiation, migration or cell death on several cell types including hematopoietic stem cells. Little and controversial information is available on the role of extracellular nucleotides in human mesenchimal stem cells (hMSCs). In this study, we assessed whether P2Rs are expressed and functional in bone marrow-derived hMSCs. Our results demonstrated, at the mRNA and protein level, the expression of all P2X and P2Y receptor subtypes identified so far. P2R activation by their natural ligands adenosine triphosphate (ATP) and uridine triphosphate (UTP) induced in hMSCs, intracellular Ca2+ concentration changes, plasma membrane depolarization and permeabilization. hMSCs were resistant to the cytotoxic effects of high dose ATP despite the expression of permeabilizing P2Rs as demonstrated by the lack of morphological changes, significant release of intracellular markers of cell death or modification of the mitochondrial network. Gene expression profiling revealed the down-regulation of cell proliferation genes whereas genes involved in cell migration and cytokine production were strongly up-regulated by ATP. Functional studies confirmed the inhibitory activity of ATP on proliferation of hMSCs and clonogenic progenitors. Moreover, ATP exerted a chemotactic effect on hMSCs and increased their migration in response to the chemokine CXCL12. Finally, whereas ATP did not affect T-cell inhibitory activity of hMSCs, the nucleotide increased the production of pro-inflammatory cytokines by hMSCs. Thus, our data show that purinergic signaling modulates hMSC functions and point to a role for extracellular nucleotides on hMSCs biology.
PubMed ID
Total Samples
2
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...