github link
Accession IconGSE14352

Genome Wide Analysis of Immune Activation in Human T and B Cells Reveals Distinct Classes of Alternatively Spliced Genes

Organism Icon Homo sapiens
Sample Icon 78 Downloadable Samples
Technology Badge Icon Affymetrix Human Human Exon 1.0 ST Array (huex10st), Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Submitter Supplied Information

Description
Alternative splicing of pre-mRNA is a mechanism that increases the protein diversity of a single gene by differential exon inclusion during post-transcriptional processing. While alternative splicing is established to occur during lymphocyte activation, little is known about the role it plays during the immune response. Our study is among the first reports of a systematic genome-wide analysis using whole exon DNA microarrays integrating alternative splicing and differential gene expression. Purified human CD2+ T or CD19+ B cells were activated using protocols to model the early events in post-transplant allograft immunity and sampled as a function of time during the process of immune activation. Here we show that 3 distinct classes of alternatively spliced and/or differentially expressed genes change in an ordered manner as a function of immune activation. We mapped our results to function-based canonical pathways and demonstrated that some are populated by only one class of genes, like integrin signaling, while other pathways, such as purine metabolism and T cell receptor signaling, are populated by all three classes of genes. Our studies augment the current view of T and B cell activation in immunity that has been based exclusively upon differential gene expression by providing evidence for a large number of molecular networks populated as a function of time and activation by alternatively spliced genes, many of which are constitutively expressed.
PubMed ID
Total Samples
80
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...