github link
Accession IconGSE12137

LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis thaliana

Organism Icon Arabidopsis thaliana
Sample Icon 4 Downloadable Samples
Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Submitter Supplied Information

Description
In plants, fatty acids are de novo synthesized predominantly in plastids fromacetyl-CoA. Although fatty acid biosynthesis has been biochemically well-studied, little isknown about the regulatory mechanisms of the pathway. Here, we show that overexpressionof the Arabidopsis (Arabidopsis thaliana) LEAFY COTYLEDON1 (LEC1) gene causesglobally increased expression of fatty acid biosynthetic genes, which are involved in keyreactions of condensation, chain elongation and desaturation of fatty acid biosynthesis. Inthe plastidial fatty acid synthetic pathway, over 58% of known enzyme-coding genes areupregulated in LEC1-overexpressing transgenic plants, including those encoding threesubunits of acetyl-CoA carboxylase, a key enzyme controlling the fatty acid biosynthesisflux. Moreover, genes involved in glycolysis and lipid accumulation are also upregulated.Consistent with these results, levels of major fatty acid species and lipids were substantiallyincreased in the transgenic plants. Genetic analysis indicates that the LEC1 function ispartially dependent on ABSCISIC ACID INSENSITIVE3, FUSCA3 and WRINKLED1 in theregulation of fatty acid biosynthesis. Moreover, a similar phenotype was observed intransgenic Arabidopsis plants overexpressing two LEC1-like genes of Brassica napus.These results suggest that LEC1 and LEC1-like genes act as key regulators to coordinate theexpression of fatty acid biosynthetic genes, thereby representing a promising target forgenetic improvement of oil-production plants.
PubMed ID
Total Samples
4
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...