github link
Accession IconGSE107041

The whole genome effects of the PPAR agonist fenofibrate on livers of hepatocyte humanized mice

Organism Icon Mus musculus
Sample Icon 6 Downloadable Samples
Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Submitter Supplied Information

Description
The role of PPAR in gene regulation in mouse liver is well characterized. However, less is known about the effect of PPAR activation in human liver. The aim of the present study was to better characterize the impact of PPAR activation on gene regulation in human liver by combining transcriptomics with the use of hepatocyte humanized livers. To that end, chimeric mice containing hepatocyte humanized livers were given an oral dose of 300 mg/kg fenofibrate daily for 4 days. Livers were collected and analysed by hematoxilin and eosin staining, qPCR, and transcriptomics. Transcriptomics data were compared with existing datasets on fenofibrate treatment in normal mice. The human hepatocytes exhibited excessive lipid accumulation. Fenofibrate increased the size of the mouse but not human hepatocytes, and tended to reduce steatosis in the human hepatocytes. Quantitative PCR indicated that induction of PPAR targets by fenofibrate was less pronounced in the human hepatocytes than in the residual mouse hepatocytes. Transcriptomics analysis indicated that, after filtering, a total of 282 genes was significantly different between fenofibrate- and control-treated mice (P<0.01). 123 genes were significantly lower and 159 genes significantly higher in the fenofibrate-treated mice, including many established PPAR targets such as FABP1, HADHB, HADHA, VNN1, PLIN2, ACADVL and HMGCS2. According to gene set enrichment analysis, fenofibrate upregulated interferon/cytokine signaling-related pathways in hepatocyte humanized liver, but downregulated these pathways in normal mouse liver. Also, fenofibrate downregulated pathways related to DNA synthesis in hepatocyte humanized liver but not in normal mouse liver. The results support the major role of PPAR in regulating hepatic lipid metabolism, and underscore the more modest effect of PPAR activation on gene regulation in human liver compared to mouse liver. The data suggest that PPAR may have a suppressive effect on DNA synthesis in human liver, and a stimulatory effect on interferon/cytokine signalling.
PubMed ID
Total Samples
6
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Sex
Specimen part
Processing Information
Additional Metadata
No rows found
Loading...