github link
Accession IconGSE10659

AFFYMETRIX ANALYSIS OF E9.5 RFC MOUSE KO EMBRYOS REVEALS ALTERED EXPRN OF GENES IN THE CUBILIN-MEGALIN COMPLEX

Organism Icon Mus musculus
Sample Icon 6 Downloadable Samples
Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Submitter Supplied Information

Description
The reduced folate carrier (RFC1) is an integral membrane protein and facilitative anion exchanger that mediates delivery of 5-methyltetrahydrofolate into mammalian cells. Adequate maternal-fetal transport of folate is necessary for normal embryogenesis. Targeted inactivation of the murine RFC1 gene results in post-implantation embryo lethality, but daily folic acid supplementation of pregnant dams prolongs survival of homozygous embryos until mid-gestation. At E10.5 RFC1-/- embryos are developmentally delayed relative to wildtype littermates, have multiple malformations, including neural tube defects, and die due to failure of chorioallantoic fusion. The mesoderm is sparse and disorganized, and there is a marked absence of erythrocytes in yolk sac blood islands. Affymetrix microarray analysis and quantitative RT-PCR validation of the relative gene expression profiles in E9.5 RFC1-/- vs. RFC1+/+ embryos indicates a dramatic downregulation of multiple genes involved in erythropoiesis, and upregulation of several genes that form the cubilin-megalin multiligand endocytic receptor complex. Megalin protein expression disappears from the visceral yolk sac of RFC1-/- embryos, and cubilin protein is widely misexpressed. Inactivation of RFC1 impacts the expression of several ligands and interacting proteins in the cubilin-amnionless-megalin complex that are involved in the maternal-fetal transport of folate, vitamin B12, and other nutrients, lipids and morphogens required for normal embryogenesis.
PubMed ID
Total Samples
6
Submitter’s Institution
Alternate Accession IDs

Samples

Show of 0 Total Samples
Filter
Add/Remove
Accession Code
Title
Processing Information
Additional Metadata
No rows found
Loading...